START HAVING FUN!


You are FREE to Read and Download any Book. Click the button below and Create a FREE account. Don't waste your time, continue to see developments from around the world through BOOK.


Available: macOS, Windows, Android, Tablet


Author: Hien Luu
Genre: Computers
Publisher: Apress
ISBN: 9781484235799
Book Pages: 393
Format: PDF, ePub & Mobi

Develop applications for the big data landscape with Spark and Hadoop. This book also explains the role of Spark in developing scalable machine learning and analytics applications with Cloud technologies. Beginning Apache Spark 2 gives you an introduction to Apache Spark and shows you how to work with it. Along the way, you’ll discover resilient distributed datasets (RDDs); use Spark SQL for structured data; and learn stream processing and build real-time applications with Spark Structured Streaming. Furthermore, you’ll learn the fundamentals of Spark ML for machine learning and much more. After you read this book, you will have the fundamentals to become proficient in using Apache Spark and know when and how to apply it to your big data applications. What You Will Learn Understand Spark unified data processing platform How to run Spark in Spark Shell or Databricks Use and manipulate RDDs Deal with structured data using Spark SQL through its operations and advanced functions Build real-time applications using Spark Structured Streaming Develop intelligent applications with the Spark Machine Learning library Who This Book Is For Programmers and developers active in big data, Hadoop, and Java but who are new to the Apache Spark platform.


Author: Muhammad Asif Abbasi
Genre: Computers
Publisher: Packt Publishing Ltd
ISBN: 9781785889585
Book Pages: 356
Format: PDF, ePub & Mobi

Learn about the fastest-growing open source project in the world, and find out how it revolutionizes big data analytics About This Book Exclusive guide that covers how to get up and running with fast data processing using Apache Spark Explore and exploit various possibilities with Apache Spark using real-world use cases in this book Want to perform efficient data processing at real time? This book will be your one-stop solution. Who This Book Is For This guide appeals to big data engineers, analysts, architects, software engineers, even technical managers who need to perform efficient data processing on Hadoop at real time. Basic familiarity with Java or Scala will be helpful. The assumption is that readers will be from a mixed background, but would be typically people with background in engineering/data science with no prior Spark experience and want to understand how Spark can help them on their analytics journey. What You Will Learn Get an overview of big data analytics and its importance for organizations and data professionals Delve into Spark to see how it is different from existing processing platforms Understand the intricacies of various file formats, and how to process them with Apache Spark. Realize how to deploy Spark with YARN, MESOS or a Stand-alone cluster manager. Learn the concepts of Spark SQL, SchemaRDD, Caching and working with Hive and Parquet file formats Understand the architecture of Spark MLLib while discussing some of the off-the-shelf algorithms that come with Spark. Introduce yourself to the deployment and usage of SparkR. Walk through the importance of Graph computation and the graph processing systems available in the market Check the real world example of Spark by building a recommendation engine with Spark using ALS. Use a Telco data set, to predict customer churn using Random Forests. In Detail Spark juggernaut keeps on rolling and getting more and more momentum each day. Spark provides key capabilities in the form of Spark SQL, Spark Streaming, Spark ML and Graph X all accessible via Java, Scala, Python and R. Deploying the key capabilities is crucial whether it is on a Standalone framework or as a part of existing Hadoop installation and configuring with Yarn and Mesos. The next part of the journey after installation is using key components, APIs, Clustering, machine learning APIs, data pipelines, parallel programming. It is important to understand why each framework component is key, how widely it is being used, its stability and pertinent use cases. Once we understand the individual components, we will take a couple of real life advanced analytics examples such as 'Building a Recommendation system', 'Predicting customer churn' and so on. The objective of these real life examples is to give the reader confidence of using Spark for real-world problems. Style and approach With the help of practical examples and real-world use cases, this guide will take you from scratch to building efficient data applications using Apache Spark. You will learn all about this excellent data processing engine in a step-by-step manner, taking one aspect of it at a time. This highly practical guide will include how to work with data pipelines, dataframes, clustering, SparkSQL, parallel programming, and such insightful topics with the help of real-world use cases.


Author: Virginia Evans
Genre: English language
Publisher:
ISBN: 1849747539
Book Pages: 112
Format: PDF, ePub & Mobi


Author: Rajanarayanan Thottuvaikkatumana
Genre: Computers
Publisher: Packt Publishing Ltd
ISBN: 9781785886690
Book Pages: 332
Format: PDF, ePub & Mobi

Develop large-scale distributed data processing applications using Spark 2 in Scala and Python About This Book This book offers an easy introduction to the Spark framework published on the latest version of Apache Spark 2 Perform efficient data processing, machine learning and graph processing using various Spark components A practical guide aimed at beginners to get them up and running with Spark Who This Book Is For If you are an application developer, data scientist, or big data solutions architect who is interested in combining the data processing power of Spark from R, and consolidating data processing, stream processing, machine learning, and graph processing into one unified and highly interoperable framework with a uniform API using Scala or Python, this book is for you. What You Will Learn Get to know the fundamentals of Spark 2 and the Spark programming model using Scala and Python Know how to use Spark SQL and DataFrames using Scala and Python Get an introduction to Spark programming using R Perform Spark data processing, charting, and plotting using Python Get acquainted with Spark stream processing using Scala and Python Be introduced to machine learning using Spark MLlib Get started with graph processing using the Spark GraphX Bring together all that you've learned and develop a complete Spark application In Detail Spark is one of the most widely-used large-scale data processing engines and runs extremely fast. It is a framework that has tools that are equally useful for application developers as well as data scientists. This book starts with the fundamentals of Spark 2 and covers the core data processing framework and API, installation, and application development setup. Then the Spark programming model is introduced through real-world examples followed by Spark SQL programming with DataFrames. An introduction to SparkR is covered next. Later, we cover the charting and plotting features of Python in conjunction with Spark data processing. After that, we take a look at Spark's stream processing, machine learning, and graph processing libraries. The last chapter combines all the skills you learned from the preceding chapters to develop a real-world Spark application. By the end of this book, you will have all the knowledge you need to develop efficient large-scale applications using Apache Spark. Style and approach Learn about Spark's infrastructure with this practical tutorial. With the help of real-world use cases on the main features of Spark we offer an easy introduction to the framework.


Author: Sourav Gulati
Genre: Computers
Publisher: Packt Publishing Ltd
ISBN: 9781787129429
Book Pages: 350
Format: PDF, ePub & Mobi

Unleash the data processing and analytics capability of Apache Spark with the language of choice: Java About This Book Perform big data processing with Spark—without having to learn Scala! Use the Spark Java API to implement efficient enterprise-grade applications for data processing and analytics Go beyond mainstream data processing by adding querying capability, Machine Learning, and graph processing using Spark Who This Book Is For If you are a Java developer interested in learning to use the popular Apache Spark framework, this book is the resource you need to get started. Apache Spark developers who are looking to build enterprise-grade applications in Java will also find this book very useful. What You Will Learn Process data using different file formats such as XML, JSON, CSV, and plain and delimited text, using the Spark core Library. Perform analytics on data from various data sources such as Kafka, and Flume using Spark Streaming Library Learn SQL schema creation and the analysis of structured data using various SQL functions including Windowing functions in the Spark SQL Library Explore Spark Mlib APIs while implementing Machine Learning techniques to solve real-world problems Get to know Spark GraphX so you understand various graph-based analytics that can be performed with Spark In Detail Apache Spark is the buzzword in the big data industry right now, especially with the increasing need for real-time streaming and data processing. While Spark is built on Scala, the Spark Java API exposes all the Spark features available in the Scala version for Java developers. This book will show you how you can implement various functionalities of the Apache Spark framework in Java, without stepping out of your comfort zone. The book starts with an introduction to the Apache Spark 2.x ecosystem, followed by explaining how to install and configure Spark, and refreshes the Java concepts that will be useful to you when consuming Apache Spark's APIs. You will explore RDD and its associated common Action and Transformation Java APIs, set up a production-like clustered environment, and work with Spark SQL. Moving on, you will perform near-real-time processing with Spark streaming, Machine Learning analytics with Spark MLlib, and graph processing with GraphX, all using various Java packages. By the end of the book, you will have a solid foundation in implementing components in the Spark framework in Java to build fast, real-time applications. Style and approach This practical guide teaches readers the fundamentals of the Apache Spark framework and how to implement components using the Java language. It is a unique blend of theory and practical examples, and is written in a way that will gradually build your knowledge of Apache Spark.


Author: Hien Luu
Genre: Computers
Publisher: Apress
ISBN: 9781484235799
Book Pages: 393
Format: PDF, ePub & Mobi

Develop applications for the big data landscape with Spark and Hadoop. This book also explains the role of Spark in developing scalable machine learning and analytics applications with Cloud technologies. Beginning Apache Spark 2 gives you an introduction to Apache Spark and shows you how to work with it. Along the way, you’ll discover resilient distributed datasets (RDDs); use Spark SQL for structured data; and learn stream processing and build real-time applications with Spark Structured Streaming. Furthermore, you’ll learn the fundamentals of Spark ML for machine learning and much more. After you read this book, you will have the fundamentals to become proficient in using Apache Spark and know when and how to apply it to your big data applications. What You Will Learn Understand Spark unified data processing platform How to run Spark in Spark Shell or Databricks Use and manipulate RDDs Deal with structured data using Spark SQL through its operations and advanced functions Build real-time applications using Spark Structured Streaming Develop intelligent applications with the Spark Machine Learning library Who This Book Is For Programmers and developers active in big data, Hadoop, and Java but who are new to the Apache Spark platform.


Author: Muhammad Asif Abbasi
Genre: Computers
Publisher: Packt Publishing Ltd
ISBN: 9781785889585
Book Pages: 356
Format: PDF, ePub & Mobi

Learn about the fastest-growing open source project in the world, and find out how it revolutionizes big data analytics About This Book Exclusive guide that covers how to get up and running with fast data processing using Apache Spark Explore and exploit various possibilities with Apache Spark using real-world use cases in this book Want to perform efficient data processing at real time? This book will be your one-stop solution. Who This Book Is For This guide appeals to big data engineers, analysts, architects, software engineers, even technical managers who need to perform efficient data processing on Hadoop at real time. Basic familiarity with Java or Scala will be helpful. The assumption is that readers will be from a mixed background, but would be typically people with background in engineering/data science with no prior Spark experience and want to understand how Spark can help them on their analytics journey. What You Will Learn Get an overview of big data analytics and its importance for organizations and data professionals Delve into Spark to see how it is different from existing processing platforms Understand the intricacies of various file formats, and how to process them with Apache Spark. Realize how to deploy Spark with YARN, MESOS or a Stand-alone cluster manager. Learn the concepts of Spark SQL, SchemaRDD, Caching and working with Hive and Parquet file formats Understand the architecture of Spark MLLib while discussing some of the off-the-shelf algorithms that come with Spark. Introduce yourself to the deployment and usage of SparkR. Walk through the importance of Graph computation and the graph processing systems available in the market Check the real world example of Spark by building a recommendation engine with Spark using ALS. Use a Telco data set, to predict customer churn using Random Forests. In Detail Spark juggernaut keeps on rolling and getting more and more momentum each day. Spark provides key capabilities in the form of Spark SQL, Spark Streaming, Spark ML and Graph X all accessible via Java, Scala, Python and R. Deploying the key capabilities is crucial whether it is on a Standalone framework or as a part of existing Hadoop installation and configuring with Yarn and Mesos. The next part of the journey after installation is using key components, APIs, Clustering, machine learning APIs, data pipelines, parallel programming. It is important to understand why each framework component is key, how widely it is being used, its stability and pertinent use cases. Once we understand the individual components, we will take a couple of real life advanced analytics examples such as 'Building a Recommendation system', 'Predicting customer churn' and so on. The objective of these real life examples is to give the reader confidence of using Spark for real-world problems. Style and approach With the help of practical examples and real-world use cases, this guide will take you from scratch to building efficient data applications using Apache Spark. You will learn all about this excellent data processing engine in a step-by-step manner, taking one aspect of it at a time. This highly practical guide will include how to work with data pipelines, dataframes, clustering, SparkSQL, parallel programming, and such insightful topics with the help of real-world use cases.


Author: Siamak Amirghodsi
Genre: Computers
Publisher: Packt Publishing Ltd
ISBN: 9781782174608
Book Pages: 666
Format: PDF, ePub & Mobi

Simplify machine learning model implementations with Spark About This Book Solve the day-to-day problems of data science with Spark This unique cookbook consists of exciting and intuitive numerical recipes Optimize your work by acquiring, cleaning, analyzing, predicting, and visualizing your data Who This Book Is For This book is for Scala developers with a fairly good exposure to and understanding of machine learning techniques, but lack practical implementations with Spark. A solid knowledge of machine learning algorithms is assumed, as well as hands-on experience of implementing ML algorithms with Scala. However, you do not need to be acquainted with the Spark ML libraries and ecosystem. What You Will Learn Get to know how Scala and Spark go hand-in-hand for developers when developing ML systems with Spark Build a recommendation engine that scales with Spark Find out how to build unsupervised clustering systems to classify data in Spark Build machine learning systems with the Decision Tree and Ensemble models in Spark Deal with the curse of high-dimensionality in big data using Spark Implement Text analytics for Search Engines in Spark Streaming Machine Learning System implementation using Spark In Detail Machine learning aims to extract knowledge from data, relying on fundamental concepts in computer science, statistics, probability, and optimization. Learning about algorithms enables a wide range of applications, from everyday tasks such as product recommendations and spam filtering to cutting edge applications such as self-driving cars and personalized medicine. You will gain hands-on experience of applying these principles using Apache Spark, a resilient cluster computing system well suited for large-scale machine learning tasks. This book begins with a quick overview of setting up the necessary IDEs to facilitate the execution of code examples that will be covered in various chapters. It also highlights some key issues developers face while working with machine learning algorithms on the Spark platform. We progress by uncovering the various Spark APIs and the implementation of ML algorithms with developing classification systems, recommendation engines, text analytics, clustering, and learning systems. Toward the final chapters, we'll focus on building high-end applications and explain various unsupervised methodologies and challenges to tackle when implementing with big data ML systems. Style and approach This book is packed with intuitive recipes supported with line-by-line explanations to help you understand how to optimize your work flow and resolve problems when working with complex data modeling tasks and predictive algorithms. This is a valuable resource for data scientists and those working on large scale data projects.


Author: Krishna Sankar
Genre: Computers
Publisher: Packt Publishing Ltd
ISBN: 9781785882968
Book Pages: 274
Format: PDF, ePub & Mobi

Learn how to use Spark to process big data at speed and scale for sharper analytics. Put the principles into practice for faster, slicker big data projects. About This Book A quick way to get started with Spark – and reap the rewards From analytics to engineering your big data architecture, we've got it covered Bring your Scala and Java knowledge – and put it to work on new and exciting problems Who This Book Is For This book is for developers with little to no knowledge of Spark, but with a background in Scala/Java programming. It's recommended that you have experience in dealing and working with big data and a strong interest in data science. What You Will Learn Install and set up Spark in your cluster Prototype distributed applications with Spark's interactive shell Perform data wrangling using the new DataFrame APIs Get to know the different ways to interact with Spark's distributed representation of data (RDDs) Query Spark with a SQL-like query syntax See how Spark works with big data Implement machine learning systems with highly scalable algorithms Use R, the popular statistical language, to work with Spark Apply interesting graph algorithms and graph processing with GraphX In Detail When people want a way to process big data at speed, Spark is invariably the solution. With its ease of development (in comparison to the relative complexity of Hadoop), it's unsurprising that it's becoming popular with data analysts and engineers everywhere. Beginning with the fundamentals, we'll show you how to get set up with Spark with minimum fuss. You'll then get to grips with some simple APIs before investigating machine learning and graph processing – throughout we'll make sure you know exactly how to apply your knowledge. You will also learn how to use the Spark shell, how to load data before finding out how to build and run your own Spark applications. Discover how to manipulate your RDD and get stuck into a range of DataFrame APIs. As if that's not enough, you'll also learn some useful Machine Learning algorithms with the help of Spark MLlib and integrating Spark with R. We'll also make sure you're confident and prepared for graph processing, as you learn more about the GraphX API. Style and approach This book is a basic, step-by-step tutorial that will help you take advantage of all that Spark has to offer.


Author: Romeo Kienzler
Genre: Computers
Publisher: Packt Publishing Ltd
ISBN: 9781789959918
Book Pages: 616
Format: PDF, ePub & Mobi

Build efficient data flow and machine learning programs with this flexible, multi-functional open-source cluster-computing framework Key Features Master the art of real-time big data processing and machine learning Explore a wide range of use-cases to analyze large data Discover ways to optimize your work by using many features of Spark 2.x and Scala Book Description Apache Spark is an in-memory, cluster-based data processing system that provides a wide range of functionalities such as big data processing, analytics, machine learning, and more. With this Learning Path, you can take your knowledge of Apache Spark to the next level by learning how to expand Spark's functionality and building your own data flow and machine learning programs on this platform. You will work with the different modules in Apache Spark, such as interactive querying with Spark SQL, using DataFrames and datasets, implementing streaming analytics with Spark Streaming, and applying machine learning and deep learning techniques on Spark using MLlib and various external tools. By the end of this elaborately designed Learning Path, you will have all the knowledge you need to master Apache Spark, and build your own big data processing and analytics pipeline quickly and without any hassle. This Learning Path includes content from the following Packt products: Mastering Apache Spark 2.x by Romeo Kienzler Scala and Spark for Big Data Analytics by Md. Rezaul Karim, Sridhar Alla Apache Spark 2.x Machine Learning Cookbook by Siamak Amirghodsi, Meenakshi Rajendran, Broderick Hall, Shuen MeiCookbook What you will learn Get to grips with all the features of Apache Spark 2.x Perform highly optimized real-time big data processing Use ML and DL techniques with Spark MLlib and third-party tools Analyze structured and unstructured data using SparkSQL and GraphX Understand tuning, debugging, and monitoring of big data applications Build scalable and fault-tolerant streaming applications Develop scalable recommendation engines Who this book is for If you are an intermediate-level Spark developer looking to master the advanced capabilities and use-cases of Apache Spark 2.x, this Learning Path is ideal for you. Big data professionals who want to learn how to integrate and use the features of Apache Spark and build a strong big data pipeline will also find this Learning Path useful. To grasp the concepts explained in this Learning Path, you must know the fundamentals of Apache Spark and Scala.